kingsliner.blogg.se

Apache airflow performance
Apache airflow performance












apache airflow performance

As a result of this rapid growth, we have encountered a few challenges, including slow file access, insufficient control over DAG (directed acyclic graph) capabilities, irregular levels of traffic, and resource contention between workloads, to name a few.īelow we’ll share some of the lessons we learned and solutions we built in order to run Airflow at scale. As adoption increases within Shopify, the load incurred on our Airflow deployments will only increase. This environment averages over 400 tasks running at a given moment and over 150,000 runs executed per day. In our largest environment, we run over 10,000 DAGs representing a large variety of workloads. Shopify’s usage of Airflow has scaled dramatically over the past two years. At the time of writing, we are currently running Airflow 2.2 on Kubernetes, using the Celery executor and MySQL 8. At Shopify, we’ve been running Airflow in production for over two years for a variety of workflows, including data extractions, machine learning model training, Apache Iceberg table maintenance, and DBT-powered data modeling. Apache Airflow is an orchestration platform that enables development, scheduling and monitoring of workflows. datetime ( 2022, 1, 1 ), schedule =, tags =, ) as dag : start = EmptyOperator ( task_id = "start", ) section_1 = SubDagOperator ( task_id = "section-1", subdag = subdag ( DAG_NAME, "section-1", dag. Defaults to """ get_ip = GetRequestOperator ( task_id = "get_ip", url = "" ) ( multiple_outputs = True ) def prepare_email ( raw_json : dict ) -> dict : external_ip = raw_json return, start_date = datetime. datetime ( 2021, 1, 1, tz = "UTC" ), catchup = False, tags =, ) def example_dag_decorator ( email : str = ): """ DAG to send server IP to email.

apache airflow performance

Schedule interval put in place, the logical date is going to indicate the timeĪt which it marks the start of the data interval, where the DAG run’s startĭate would then be the logical date + scheduled ( schedule = None, start_date = pendulum. However, when the DAG is being automatically scheduled, with certain Logical is because of the abstract nature of it having multiple meanings,ĭepending on the context of the DAG run itself.įor example, if a DAG run is manually triggered by the user, its logical date would be theĭate and time of which the DAG run was triggered, and the value should be equal (formally known as execution date), which describes the intended time aĭAG run is scheduled or triggered. Run’s start and end date, there is another date called logical date This period describes the time when the DAG actually ‘ran.’ Aside from the DAG Tasks specified inside a DAG are also instantiated intoĪ DAG run will have a start date when it starts, and end date when it ends. In much the same way a DAG instantiates into a DAG Run every time it’s run, Run will have one data interval covering a single day in that 3 month period,Īnd that data interval is all the tasks, operators and sensors inside the DAG Those DAG Runs will all have been started on the same actual day, but each DAG The previous 3 months of data-no problem, since Airflow can backfill the DAGĪnd run copies of it for every day in those previous 3 months, all at once. It’s been rewritten, and you want to run it on Same DAG, and each has a defined data interval, which identifies the period ofĪs an example of why this is useful, consider writing a DAG that processes aĭaily set of experimental data. If schedule is not enough to express the DAG’s schedule, see Timetables.įor more information on logical date, see Data Interval andĮvery time you run a DAG, you are creating a new instance of that DAG whichĪirflow calls a DAG Run. For more information on schedule values, see DAG Run.














Apache airflow performance